Anyone tried mongodb.com's Atlas Search?

For multi-tenant could you not use Search itself to filter the result to only specific tenants? So something like:

tenantId : {
must_be: [1, 2, 3]
}

Is there a reason that wouldn’t work? I’m just going by the references on: https://docs.atlas.mongodb.com/reference/atlas-search/performance#-match-aggregation-stage-usage.

I’m not sure whether I understand your idea. Of course, you can use $match right after $search, but this will search for all matches (across all tenants) and later filter them. Now, while this may work, it will scale as the $search alone, not the $match + $search ($match for tenant ID may get rid of 99.9% results (if there is 1000 tenants of similar size).

Also, must itself is not an operator - it’s just part of the compound operator. That means you’d still have to use equals, which works only for booleans and ObjectIds.

So the way I’m doing this for a multi-tenant app is to use a compound query:

await Collection.rawCollection().aggregate(
  [
				{
					$search: {
						compound: {
							filter: [{
							text: {
								query: this.userId,
								path: 'createdBy',
								},
							}],
							must: [{
									text: {
										query,
										path,
										fuzzy: {
											maxEdits: 2,
											prefixLength: 1,
										},
									},
							}],
						},
					},
				},
				{
					$project: {
						score: { $meta: 'searchScore' },
						createdAt: 1,
					},
				},
			]
).toArray();

Where the ‘createdBy’ path is indexed using lucene.keyword so that it requires an exact match. All my tests indicated that this is accurate and doesn’t pollute results and this was confirmed by a member of the Atlas Search team.

That said, I want to subscribe to the results so I have an added check whereby the search operation only brings up the relevant _ids and I then subscribe to those _ids and ensure that the match confirms that the createdBy matches the subscribing userId.

Hope that makes sense.

1 Like

Well, it took me 4 months of back & forth with MongoDB Support to finally get fuzzy people’s name searches to work using Atlas Search. Here’s what I was trying to achieve:

  1. Search the users collection profile.first_name and profile.last_name fields (~260,000 user records)
  2. first_name and last_name may contain compound names like:
    { "_id" : "144020", "profile" : { "first_name" : "Juan Carlos David", "last_name" : "De Alva Borquez" }
  3. Searches should be able to find slightly misspelled names (e.g. “Frdrick”) and slight name variations e.g. Alan vs Allen, Johnson vs Johnston
  4. Capitalization and punctuation should not affect search results
  5. first_name and last_name are sometimes entered in the wrong fields (reversed)
  6. Bonus for being able to find common “alternate” given names like Bob vs Robert, Dick vs Richard, etc.

Step 1 - The user’s name needs to be concatenated into a “full_name” field in your users collection. This is the field to be eventually indexed. I my case, I have it in “profile.full_name”.

Step 2 - create a collection called “name_synonyms” as per the Atlas Search docs. I can send you mine upon request. (It’s a work in progress.)

Step 3 - create your index Atlas Search Index

{
  "mappings": {
    "dynamic": false,
    "fields": {
      "_id": { //used as secondary sort for reliable pagination
        "type": "token"
      },
      "profile": {
        "fields": {
          "full_name": [
            {
              "multi": {
                "dmsAnalyzer": {
                  "analyzer": "dmsAnalyzer",
                  "type": "string"
                }
              },
              "type": "string"
            },
            {
              "normalizer": "lowercase",
              "type": "token"
            },
            {
              "type": "autocomplete"
            }
          ]
        },
        "type": "document"
      },
      "role": [
        {
          "type": "token"
        },
        {
          "analyzer": "lucene.keyword",
          "searchAnalyzer": "lucene.keyword",
          "type": "string"
        }
      ]
    }
  },
  "analyzers": [
    {
      "name": "dmsAnalyzer",
      "tokenFilters": [
        {
          "originalTokens": "include",
          "type": "daitchMokotoffSoundex"
        }
      ],
      "tokenizer": {
        "type": "standard"
      }
    }
  ],
  "synonyms": [ //optional
    {
      "analyzer": "lucene.standard",
      "name": "nicknames",
      "source": {
        "collection": "name_synonyms"
      }
    }
  ],
  "storedSource": {
    "include": [
      "_id",
      "emails",
      "profile.first_name",
      "profile.last_name",
      "profile.full_name"
    ]
  }
}

NOTES: Using the storedSource attribute significantly increased the performance of my 260,000+ users collection. I also included the non-standard “role” field to demonstrate how to apply an additional (efficient) filter to the search.

Step 4 - Build your search query pipeline

const params = {
  search_text: "James Bond",
  role: "editor", //optional filter parameter
  skip: 0,
  limit: 10,
  min_score: 3000 //optional, but low-scoring results tend to be way off the mark
}
const pipeline = 
  {
    "$search": {
      "index": "idx_search_user_full_name",
      "returnStoredSource": true,
      "count": {
        "type": "total"
      },
      "sort": {
        "score": {
          "$meta": "searchScore",
          "order": -1
        },
        "_id": 1
      },
      "compound": {
        "should": [
          {
            "equals": {
              "path": "profile.full_name",
              "value": params.search_text,
              "score": {
                "boost": {
                  "value": 20000
                }
              }
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 10000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "slop": 0
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 5000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "slop": 3
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 1000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "slop": 0,
              "synonyms": "nicknames"
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 500
                }
              },
              "path": [
                "profile.full_name"
              ],
              "slop": 3,
              "synonyms": "nicknames"
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 100
                }
              },
              "path": {
                "value": "profile.full_name",
                "multi": "dmsAnalyzer"
              },
              "slop": 0
            }
          },
          {
            "phrase": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 100
                }
              },
              "path": {
                "value": "profile.full_name",
                "multi": "dmsAnalyzer"
              },
              "slop": 3
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 2000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "matchCriteria": "all"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 3000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "fuzzy": {},
              "matchCriteria": "all"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 50
                }
              },
              "path": {
                "value": "profile.full_name",
                "multi": "dmsAnalyzer"
              },
              "matchCriteria": "all"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 1000
                }
              },
              "path": [
                "profile.full_name"
              ],
              "matchCriteria": "all",
              "synonyms": "nicknames"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 200
                }
              },
              "path": [
                "profile.full_name"
              ],
              "matchCriteria": "any"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 100
                }
              },
              "path": [
                "profile.full_name"
              ],
              "fuzzy": {},
              "matchCriteria": "any"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 100
                }
              },
              "path": [
                "profile.full_name"
              ],
              "matchCriteria": "any",
              "synonyms": "nicknames"
            }
          },
          {
            "text": {
              "query": params.search_text,
              "score": {
                "boost": {
                  "value": 50
                }
              },
              "path": {
                "value": "profile.full_name",
                "multi": "dmsAnalyzer"
              },
              "matchCriteria": "any"
            }
          },
          {
            "autocomplete": {
              "path": "profile.full_name",
              "query": params.search_text,
              "tokenOrder": "sequential",
              "score": {
                "boost": {
                  "value": 400
                }
              }
            }
          },
          {
            "autocomplete": {
              "path": "profile.full_name",
              "query": params.search_text,
              "tokenOrder": "any",
              "score": {
                "boost": {
                  "value": 100
                }
              }
            }
          },
          {
            "autocomplete": {
              "path": "profile.full_name",
              "query": params.search_text,
              "tokenOrder": "sequential",
              "score": {
                "boost": {
                  "value": 50
                }
              },
              "fuzzy": {}
            }
          },
          {
            "autocomplete": {
              "path": "profile.full_name",
              "query": params.search_text,
              "tokenOrder": "any",
              "score": {
                "boost": {
                  "value": 25
                }
              },
              "fuzzy": {}
            }
          }
        ],
        "filter": [ // optional filter attrribute
          {
            "equals": {
              "path": "role",
              "value": params.role
            }
          }
        ]
      }
    }
  },
  {
    "$project": {
      "first_name": "$profile.first_name",
      "last_name": "$profile.last_name",
      "emails": 1,
      "role": 1,
      "score": {
        "$meta": "searchScore"
      },
      "meta": "$$SEARCH_META"
    }
  },
  {
    "$match": {
      "score": {
        "$gte": params.min_score
      }
    }
  },
  {
    "$facet": {
      "totalCount": [
        {
          "$count": "count"
        }
      ],
      "paginatedResults": [
        {
          "$skip": params.skip
        },
        {
          "$limit": params.limit
        }
      ]
    }
  },
  {
    "$project": {
      "totalCount": {
        "$arrayElemAt": [
          "$totalCount.count",
          0
        ]
      },
      "paginatedResults": 1
    }
  }
]
const users_found = await Meteor.users.rawCollection().aggregate(pipeline).toArray()
if (!users_found[0].paginatedResults || !users_found[0].paginatedResults.length) {
    retVal = {
        totalCount: 0,
        users: []
    }
} else {
    retVal = {
        totalCount: users_found[0].totalCount,
        users: users_found[0].paginatedResults
    }
}

NOTES: I use the $facet stage because the pagination method I use is of the “Page 1 of 7” style, so I need to know the Total Count of results. Alternatively, you could do away with the $facet step and implement a “Load More…” style of pagination, using the Atlas Search Pagination technique that uses a paginationToken for query optimization.

Lastly, I was encountering performance issues while testing on my development environment which I resolved by upgrading to an M30 cluster. From MongoDB Support:

There was evidence of the CPU throttling (as evidenced by a non-zero CPU Steal %) from the node metrics during this timeframe, which is due to the cluster running on burstable infrastructure (M10/M20 cluster tiers). Testing performance of your workloads on a “production-ready” M30 or higher tier will provide a more consistent gauge for evaluation.

Hopefully this will help others save some time implementing Fuzzy Searches on their Meteor users collection.

2 Likes